3.1.23 \(\int \frac {1}{(a+b e^{c-d x})^3} \, dx\) [23]

Optimal. Leaf size=72 \[ -\frac {1}{2 a d \left (a+b e^{c-d x}\right )^2}-\frac {1}{a^2 d \left (a+b e^{c-d x}\right )}+\frac {x}{a^3}+\frac {\log \left (a+b e^{c-d x}\right )}{a^3 d} \]

[Out]

-1/2/a/d/(a+b*exp(-d*x+c))^2-1/a^2/d/(a+b*exp(-d*x+c))+x/a^3+ln(a+b*exp(-d*x+c))/a^3/d

________________________________________________________________________________________

Rubi [A]
time = 0.03, antiderivative size = 72, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {2320, 46} \begin {gather*} \frac {\log \left (a+b e^{c-d x}\right )}{a^3 d}+\frac {x}{a^3}-\frac {1}{a^2 d \left (a+b e^{c-d x}\right )}-\frac {1}{2 a d \left (a+b e^{c-d x}\right )^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*E^(c - d*x))^(-3),x]

[Out]

-1/2*1/(a*d*(a + b*E^(c - d*x))^2) - 1/(a^2*d*(a + b*E^(c - d*x))) + x/a^3 + Log[a + b*E^(c - d*x)]/(a^3*d)

Rule 46

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*x
)^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, 0] && IntegerQ[n] &&  !(IGtQ[n, 0] && Lt
Q[m + n + 2, 0])

Rule 2320

Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Dist[v/D[v, x], Subst[Int[FunctionOfExponentialFu
nction[u, x]/x, x], x, v], x]] /; FunctionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; F
reeQ[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x))*(F_)[v_] /; FreeQ[{a, b, c}, x
] && InverseFunctionQ[F[x]]]

Rubi steps

\begin {align*} \int \frac {1}{\left (a+b e^{c-d x}\right )^3} \, dx &=-\frac {\text {Subst}\left (\int \frac {1}{x (a+b x)^3} \, dx,x,e^{c-d x}\right )}{d}\\ &=-\frac {\text {Subst}\left (\int \left (\frac {1}{a^3 x}-\frac {b}{a (a+b x)^3}-\frac {b}{a^2 (a+b x)^2}-\frac {b}{a^3 (a+b x)}\right ) \, dx,x,e^{c-d x}\right )}{d}\\ &=-\frac {1}{2 a d \left (a+b e^{c-d x}\right )^2}-\frac {1}{a^2 d \left (a+b e^{c-d x}\right )}+\frac {x}{a^3}+\frac {\log \left (a+b e^{c-d x}\right )}{a^3 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.12, size = 67, normalized size = 0.93 \begin {gather*} \frac {\frac {b e^c \left (3 b e^c+4 a e^{d x}\right )}{\left (b e^c+a e^{d x}\right )^2}+2 \log \left (a^2 d \left (b e^c+a e^{d x}\right )\right )}{2 a^3 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*E^(c - d*x))^(-3),x]

[Out]

((b*E^c*(3*b*E^c + 4*a*E^(d*x)))/(b*E^c + a*E^(d*x))^2 + 2*Log[a^2*d*(b*E^c + a*E^(d*x))])/(2*a^3*d)

________________________________________________________________________________________

Maple [A]
time = 0.02, size = 71, normalized size = 0.99

method result size
derivativedivides \(-\frac {\frac {\ln \left ({\mathrm e}^{-d x +c}\right )}{a^{3}}-\frac {\ln \left (a +b \,{\mathrm e}^{-d x +c}\right )}{a^{3}}+\frac {1}{a^{2} \left (a +b \,{\mathrm e}^{-d x +c}\right )}+\frac {1}{2 a \left (a +b \,{\mathrm e}^{-d x +c}\right )^{2}}}{d}\) \(71\)
default \(-\frac {\frac {\ln \left ({\mathrm e}^{-d x +c}\right )}{a^{3}}-\frac {\ln \left (a +b \,{\mathrm e}^{-d x +c}\right )}{a^{3}}+\frac {1}{a^{2} \left (a +b \,{\mathrm e}^{-d x +c}\right )}+\frac {1}{2 a \left (a +b \,{\mathrm e}^{-d x +c}\right )^{2}}}{d}\) \(71\)
risch \(\frac {x}{a^{3}}-\frac {c}{a^{3} d}-\frac {2 b \,{\mathrm e}^{-d x +c}+3 a}{2 a^{2} d \left (a +b \,{\mathrm e}^{-d x +c}\right )^{2}}+\frac {\ln \left ({\mathrm e}^{-d x +c}+\frac {a}{b}\right )}{a^{3} d}\) \(72\)
norman \(\frac {\frac {x}{a}+\frac {b^{2} x \,{\mathrm e}^{-2 d x +2 c}}{a^{3}}+\frac {2 b x \,{\mathrm e}^{-d x +c}}{a^{2}}+\frac {2 b \,{\mathrm e}^{-d x +c}}{a^{2} d}+\frac {3 b^{2} {\mathrm e}^{-2 d x +2 c}}{2 a^{3} d}}{\left (a +b \,{\mathrm e}^{-d x +c}\right )^{2}}+\frac {\ln \left (a +b \,{\mathrm e}^{-d x +c}\right )}{a^{3} d}\) \(108\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+b*exp(-d*x+c))^3,x,method=_RETURNVERBOSE)

[Out]

-1/d*(1/a^3*ln(exp(-d*x+c))-1/a^3*ln(a+b*exp(-d*x+c))+1/a^2/(a+b*exp(-d*x+c))+1/2/a/(a+b*exp(-d*x+c))^2)

________________________________________________________________________________________

Maxima [A]
time = 0.30, size = 88, normalized size = 1.22 \begin {gather*} -\frac {2 \, b e^{\left (-d x + c\right )} + 3 \, a}{2 \, {\left (2 \, a^{3} b e^{\left (-d x + c\right )} + a^{2} b^{2} e^{\left (-2 \, d x + 2 \, c\right )} + a^{4}\right )} d} + \frac {d x - c}{a^{3} d} + \frac {\log \left (b e^{\left (-d x + c\right )} + a\right )}{a^{3} d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*exp(-d*x+c))^3,x, algorithm="maxima")

[Out]

-1/2*(2*b*e^(-d*x + c) + 3*a)/((2*a^3*b*e^(-d*x + c) + a^2*b^2*e^(-2*d*x + 2*c) + a^4)*d) + (d*x - c)/(a^3*d)
+ log(b*e^(-d*x + c) + a)/(a^3*d)

________________________________________________________________________________________

Fricas [A]
time = 0.36, size = 132, normalized size = 1.83 \begin {gather*} \frac {2 \, b^{2} d x e^{\left (-2 \, d x + 2 \, c\right )} + 2 \, a^{2} d x - 3 \, a^{2} + 2 \, {\left (2 \, a b d x - a b\right )} e^{\left (-d x + c\right )} + 2 \, {\left (2 \, a b e^{\left (-d x + c\right )} + b^{2} e^{\left (-2 \, d x + 2 \, c\right )} + a^{2}\right )} \log \left (b e^{\left (-d x + c\right )} + a\right )}{2 \, {\left (2 \, a^{4} b d e^{\left (-d x + c\right )} + a^{3} b^{2} d e^{\left (-2 \, d x + 2 \, c\right )} + a^{5} d\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*exp(-d*x+c))^3,x, algorithm="fricas")

[Out]

1/2*(2*b^2*d*x*e^(-2*d*x + 2*c) + 2*a^2*d*x - 3*a^2 + 2*(2*a*b*d*x - a*b)*e^(-d*x + c) + 2*(2*a*b*e^(-d*x + c)
 + b^2*e^(-2*d*x + 2*c) + a^2)*log(b*e^(-d*x + c) + a))/(2*a^4*b*d*e^(-d*x + c) + a^3*b^2*d*e^(-2*d*x + 2*c) +
 a^5*d)

________________________________________________________________________________________

Sympy [A]
time = 0.08, size = 78, normalized size = 1.08 \begin {gather*} \frac {- 3 a - 2 b e^{c - d x}}{2 a^{4} d + 4 a^{3} b d e^{c - d x} + 2 a^{2} b^{2} d e^{2 c - 2 d x}} + \frac {x}{a^{3}} + \frac {\log {\left (\frac {a}{b} + e^{c - d x} \right )}}{a^{3} d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*exp(-d*x+c))**3,x)

[Out]

(-3*a - 2*b*exp(c - d*x))/(2*a**4*d + 4*a**3*b*d*exp(c - d*x) + 2*a**2*b**2*d*exp(2*c - 2*d*x)) + x/a**3 + log
(a/b + exp(c - d*x))/(a**3*d)

________________________________________________________________________________________

Giac [A]
time = 2.73, size = 71, normalized size = 0.99 \begin {gather*} \frac {\frac {2 \, {\left (d x - c\right )}}{a^{3}} + \frac {2 \, \log \left ({\left | b e^{\left (-d x + c\right )} + a \right |}\right )}{a^{3}} - \frac {2 \, a b e^{\left (-d x + c\right )} + 3 \, a^{2}}{{\left (b e^{\left (-d x + c\right )} + a\right )}^{2} a^{3}}}{2 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*exp(-d*x+c))^3,x, algorithm="giac")

[Out]

1/2*(2*(d*x - c)/a^3 + 2*log(abs(b*e^(-d*x + c) + a))/a^3 - (2*a*b*e^(-d*x + c) + 3*a^2)/((b*e^(-d*x + c) + a)
^2*a^3))/d

________________________________________________________________________________________

Mupad [B]
time = 3.65, size = 124, normalized size = 1.72 \begin {gather*} \frac {\frac {x}{a}+\frac {b^2\,x\,{\mathrm {e}}^{2\,c-2\,d\,x}}{a^3}+\frac {2\,b\,x\,{\mathrm {e}}^{c-d\,x}}{a^2}+\frac {3\,b^2\,{\mathrm {e}}^{2\,c-2\,d\,x}}{2\,a^3\,d}+\frac {2\,b\,{\mathrm {e}}^{c-d\,x}}{a^2\,d}}{a^2+2\,{\mathrm {e}}^{c-d\,x}\,a\,b+{\mathrm {e}}^{2\,c-2\,d\,x}\,b^2}+\frac {\ln \left (a+b\,{\mathrm {e}}^{-d\,x}\,{\mathrm {e}}^c\right )}{a^3\,d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a + b*exp(c - d*x))^3,x)

[Out]

(x/a + (b^2*x*exp(2*c - 2*d*x))/a^3 + (2*b*x*exp(c - d*x))/a^2 + (3*b^2*exp(2*c - 2*d*x))/(2*a^3*d) + (2*b*exp
(c - d*x))/(a^2*d))/(a^2 + b^2*exp(2*c - 2*d*x) + 2*a*b*exp(c - d*x)) + log(a + b*exp(-d*x)*exp(c))/(a^3*d)

________________________________________________________________________________________